CALCULATION OF EXPLOSIVE ACTION IN BRITTLE ROCK.
CASE OF FRACTURE WITH FORMATION OF TEARING CRACKS

A. B. Bagdasaryan

The problem of explosive action in brittle rock in the general form was studied in [1}. Here
we examine one case of this problem corresponding to relative low pressures in the explo-
sive cavity, when fracture takes place only by the formation of radial cracks.

The solution in the region which has not yet fractured by radial cracks under the action of the ex-
plosion is described by the equations [1]

o = *oCOZ{f—'l@+3~‘i:3’[il@+f_<Q]}_ph

z i {0 ) 3
ovmon= =0 {r ;0 - Z2[0 18 o,

=1—2,2=rlry, 1=Clr,g

Here 0}, 0y, 0 , are the stresses on the coordinate planes whichare by virtue of spherical symmetry
the principal planes; V is the radial velocity of the particles; u is the displacement in the radial direction;
X, T are dimensionless coordinates; C, is the sound speed in the unfractured material; r; is the initial ra~
dius of the cavity; t is time; r is the Lagrangian coordinate; ¢ is the Poisson coefficient; p is the initial
density. The single undefined function f(¢) in these equations is found from the problem boundary conditions.

If the initial pressure P; in the cavity is small, fracture does not occur and the cavity will radiate an
elastic wave described by (1), in which the function f(¢) has the form
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where Py, is the initial hydrostatic pressure in the medium.
We take the usual fracture conditions

Gy =, (by tearing) 3)

G, — Gp = — 21, (by shearing) “)

where oy, Ty are the strength constants of the material. Let us establish the initial conditions for which
fracture begins by tearing. From (1) and ) we have
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Hence we see that at the initial moment the stresses o, and ¢, are compressive and, consequently,
fracture by tearing at the initial moment does not occur; nor does fracture take place by shearing if the
condition is satisfied:

PD <Ph + 21(1,__—22) T- (6)

Let us examine the case in which the condition (6) is satisfied and let us find the nature of the motion.
which is described at the initial moment by (1) and 2).

The radial stress o, at the edge of the cavity is constant, while the ring stress o, there will vary
with time. From (1) and (2) it is easy to obtain the expressions for ¢ (7, 1) and calculate the time 7y when
the fracture condition (3) is reached at the cavity. The equation for 7; has the form
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In order to determine the final condition for which fracture will take place only by tearing, we find
the value of P, for which both (3) and (4) are met for the point x =1, i.e.,

P21, —o, (8)

Thus, if Py < Pak fracture is possible only by tearing, and it begins at the cavity surface at the time 7
defined by (7).

Figure la shows for granite (o, =45 kg/cm?, 7, = 780 kg/cm?, ¢ = 0.3 Young's modulus E = 2.22 - 10
kg /cm? [2]) the regions of Pjand Py variation in which fracture does not occur (region 1), fracture occurs by
tearing (region 2), fracture occurs by shearing when the condition (4) is reached at the cavity (region 3), or
fracture by shearing begins at the cavity immediately at the initial time (region 4).

In region 2 there are shown the (straight) isolines of 7, (Py, Py) — the moment of onset of fracture by
tearing at the cavity. The (dash-dot) line Ty = 1.8 corresponds to the case in which the condition (3) arises
at the cavity but propagation of the fracture front does not take place (boundary of regions 1 and 2). The
dashed line is the analogous boundary for the static solution of the problem. This line is located above the
dynamic loading line (dash-dot). Thus, under dynamic loading conditions the ability of the medium to with-
stand without fracture the pressure applied in the cavity is less than for static loading.

In the present study we examine only those initial conditions for which the point (P, Py) falls in re-
gion 2. In this case, after the time 7y there will propagate from the cavity surface into the depth of the
medium in accordance with the a priori unknown law x = x,(7) a spherical fracture front, spreading in the
medium a system of radical normal-tearing-mode cracks. The solution in the region x = x4(7) is given as
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beforeby (1), and the unknown function f(¢) is found from the condition at the fracture front, i.e., with ac-
count for the solution in the region 1 = x = xy (7).

In the fracture region the stress, velocity, and displacement fields are defined by the equations [1]
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where Cq is the speed of sound in the material fractured by radial cracks.
In (1) and (9) we have the three unknown functions f(¢), fi(¢), f,(®), which must be found from the

condition at the cavity and from the joining condition at the fracture front, i.e., on the line x = x(7), which
is also to be determined. These conditions finally reduce to the system of relations {1]
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where v is the adiabatic exponent of the explosion products (for high pressures ¥ = 3, for low pressures
Y & 1.25).

The explosion wave propagation process can be broken down into the following sequential stages:

1) in the course of the time 0 = 7 = 7y the cavity surface radiates an elastic wave and fracture does
not occur in the medium;
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2) an elastic wave propagates in the unfractured medium, the medium around the cavity fractures;
the boundary between the unfractured and fractured zones (fracture shock wave) propagates from
the cavity surface into the depth of the medium;

3) the fracture front stops, an elastic wave propagates through the unfractured medium, the boundary
is a contact discontinuity; new fracture of the medium does not take place;

4) the contact discontinuity displaces into the fractured region; radiation of elastic waves continues.

The first stage is described completely by (1), 2). The second stage (T, = T = 7,) is described by
(10} (7, is the time when the fracture front comes to a stop, i.e., when X(7y) = 0). The third stage (1, =
T < Ty) is described by (10), in which the first equation must be replaced by the equation x,(7) = const.

The solution obtained in this fashion will correspond to the absence of new fractures, and the stress
oy at the fracture boundary on the unfractured region side will decrease from the value o, . If at the mo-
ment T = T3 the stress ¢, at the fracture boundary on the unfractured material side vanishes the fourth
stage arises, while if it approaches its positive asymptotic value the third stage will continue up to T = e,
The fourth stage is described by equations obtained from (10) if in the third equation of this system the
right side is equated to zero and we set Z, = 0. The resulting solution corresponds to the fact that as a
result of the sign change of ¢, a compressive stress develops at the boundary of the fractured region and
the boundary will displace into the fractured material, closing the cracks. Thereafter the boundary x =
x4{7T) may oscillate about the position which it approaches asymptotically. If in the process of these oscil-
lations the front x = x{(T) reaches the true boundary of the unfractured region, then the solution must be
constructed with account for the new fracture, i.e., from (10). The numerical solution method for this
problem is described in [1].

Equation (10) breaks down into two systems of ordinary differential equations for which the Cauchy
problem is posed, and these systems are integrated sequentially each time for the new Cauchy conditions
and for the new interval of variation of the independent variable with use of the solution of the preceding
system. For the initial conditions we must construct the asymptotic solution in the region 7y = 7 = Ty +AT,
where AT — the initial segment — is a given quantity. The existence of the asymptotic solution of (10) in
AT — the vicinity of the initial point (Ty, 1) — means that the function f;(¢;) will be known in the interval

Eu=M — 1 <E<Ep =My + A7) —1 .

Assuming the function fi(§;) known in the interval {4y, £45), from the first three equations (10) we
obtain the system for determining the functions f &9y Jo (ny),and x4(7). Considering them as functions of
the argument Z; = T—xy(T) and converting from differentiation with respect to the variables &, ny, T to
differentiation with respect to £; with account for the conversion equations
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we reduce the first three equations (10) to the following system of ordinary differential equations for find-
ing the functions f(&y), fo(n1) = gy(&y) and 7(Zy):
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and the functions gy(&y) = fy(&y) and gj(&y) = fi(¢,) are known, The arguments &; and 7y are expressed
through ¢, by the equations

=A@+ & m=0+1) W) -4 (14)

For (12) the Cauchy problem is posed in the interval £y = {3 = &y, where {4y = Ty—x4(7) and &y, is
found in the process of integrating (12) using the equation

fio = By — (A — 1) w(&w) (15)

The initial conditions for (12) with ¢y = £44 are taken from the asymptotic solution. Solving the indi-
cated Cauchy problem, we find the function f(¢y) in the interval [Lyy, g9], X4(T) in[Ty + AT, Ty(£45)] and f ()
in [T]n, 7712], where

Ny = Aty + A1) + 1, N = (b + 1) 12(8) — Lie
When converting to the variable n° = AT + 1 the last equation (L0) takes the form

WL () + 12’0+ L0+ () = po [+ L)+ fo () + 12 ] (16)

where I(m°) = f(£°) and f,°) is a known function in the interval ny; = 7° = 7y,. Here again the Cauchy
problem is posed, for which the initial conditions are again taken for n° = 7y from the asymptotic solution.
Solving this problem, we find the function fy(§;) in the interval &5, < &; =7y, +2. We again return to (12)
for the new initial conditions corresponding to the value of £y, from the preceding sclution of this same
system and for the new interval of variation of the independent variable £49 = & = {43, where {43 is calcu-
lated in the process of constructing the solution using (15) if therein the index 12 is replaced by 13, Thus,
after solving this problem we calculate f(,), x(7) and f;(n) and f,(n,) becomes known in the interval
(719, n43], where 143 = (A + 1) T(&y3), after which we turn to the solution of (16) and so on.

As we have mentioned above, to construct the solution we must have the asymptotic solution near the
point T = 7y, x = 1, which is constructed by calculating the values of the unknown functions and their de-
rivatives at the point (T4, 1). By virtue of the requirement for continuity of the displacements along the
characteristic £y = Ty—1 the functions f(%;) and " (&) must be continuous on this characteristic and, there-
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TABLE 1

x 4 9y ‘ Sg ’ \2 x 4 o, ‘ Cg ‘ 2’4
1.0 —1.00| —200.0 [ —75.0 | +6.63 | 7.0 —0.60 | —25.7 | —6.3 +0.58
1.0 —0.60| —198.0 | —5.2 +5.86 [ 7.0 —0.12 [ —16.2 | —2.4 10,34
1.0]—0.12] —195.0 { +45.0 | 4-4.70 | 7.31 0.20 | —10.6 | —0.42 | +0.20
1.3 0.20] —130.0% 4-45.0 2.76 || 7.7 0.80 | —4.94 | 4-1.46 | -0.06

(—123.0) ©) (2.5 7.8 0.80 | —2.93 | 42.06 | +-0.002

1.7 0.80| —88.6 | 445.0 | J+1.42' | 7.9 1,40 | —1.38 | 4+2.48 | —0.031
(—85.0) (0) (+1.04{ 8.0 1,80 | +0.04 | 42.80 | —0.067

1.8 1.10| —76.8 | +45.0 | 4-1.02 | 8.0 2.30 | 4+4.31 | +3.00 [ —0.100
(274.5) )} (+0.72) | 8.0 2,70 | 41.90 2,99 | —0.114

1.9 1.40) —68.9 | +45.0 { 40.72°| 8.0 3.00 | 4+2.41 | +2.99 | —0.126
(—67.3) (0 (0.50)| 8.0 3.40 | 4-2.81 2.90 | —0.136

2.0 1.80] —62.8| +45.0 | 10,44 | 8.0] 3.80 | 43.12 | +2.73 | —0.14
(—61.5) (0) (4-0.29) | 15.0] —1.00 | —12,7 | —5.40 | -0.421

2.0| 2.30| —57.6 | +45.0 | 4-0.16 || 15.0| —0.60 | —7.96 | —3.20 | 4-0.261
(57.3) 0) (+0.10) | 15.0] —0.12 | ~4.93 | —1.43 | -}-0.144

2.0 2.70) —56.1{ 445.0 15.3 0.20 | —2,50 | —0.54 0.080
(—55.8) (0 | (—0.007} 15.7 0.80 | —0.49 | +0.35 | +0.012

2.0/ 3.00| -55,0{ -+42.0 | —0.120] 15.8 1.10 | 40.23°] +0.65 | —0.012
(—55.0) (0) (—0.12) | 15.9 1.40 | --0.78 | 4-0.87 | —0.030

2.0 3.40| —54.7| +437.0 | —0.25 || 16.0 1.80 | +1.28 | +1.04 | —0.047
(—54.7) (0) (—0.25) 1 16.0 2.30 | 4+1.69 | +1.16 | —0.06t

2.0y 3.80|. —55.1 | +35.0 | —0.39 | 16,0 2.70 | +1.85 | +~1.18 | —0,067
(—55.1) (0) —0.39) | 16.0 3.00 | +2.00 | +1.20 | —0.071

3.0(—1.00| —64.2 | —26.0 { —0.256( 16.0 3.40 | +2.07 | 4117 | —0.074
3.0}1-0.80f —46.3{ —12,0 | —0.225{ 16,0 3.80 | +2.09 | +1.12 | —0.074
3.0/ -0.12| —32.4{ —1.76 | —0.140{ 25.0] —4.00 | —7.66 | —3.30 | -}-0.253

3.3] 0,20 —22.8] 3-3.18 | —0.153[ 25.0| —0.60 | —4.74 | —2.00 | --0.155
3.7 0.80| —13.4| +7.45 | —0.109] 25.0{ —0.12 | —2.,52 | —0,92 | +-O. 08/
3.8] 1.40| —10.2| 18,290 | —0.029{25.3] 0,20 | —1.37 | —0.40 | 40.045
3.9 1.40| —7.72| 19.05 | --0.067] 25.7 0.80 | —0.45 | +1.14 | +0.004
4.0] 1.80| —5.45| +9.80 | 10.161] 25.8 1.10 | 40.20 | +0.32 | —0.011
4.0 2.30] —3.44| 49.84 | 4-0.283( 25.9 1.40 | 40.62 | +0.46 | —0.022
4,01 2.70] —2.48 | +9.75 | +0.826| 26.0 1.80 | 4-0.92 | +0.57 | —0.032
4,0] 3.001 —1.641| 49.65 | --0.987] 26.0 2.30 { +1.46 | 1065 | —0,040
4.0] 3.40| —0.93| 49.41 | -1.493) 26,0 2.70 | +1.25 | 40,67 | —0.043
4.0] 3.80| —0.32| 18.26 | 4-2.138] 26.0 3.00 | 41.33 | 4-0.60 | —0.046
7.0/ —1.00] —3%.2!—11.5 4-0.91 || 26.0 3.40 [ +1.36 | +40.69 | —0.047

* Numbers in parentheses correspond to the value behind the frac-

ture front.

fore, the functions f(ry—1) = f; and JS*(1;—1) = fy* will be known. Then from the first equation (10) we

find f;.* Since only the sum f;(§) + f,(1) appears in (9), one of the terms in the sum fy, + fyy can be

specified arbitrarily, for example we can set fy, = 0.

From (10) for T = Tj, x = 1 it is easy to calculate fy", fio» JSio fzo, and Xjp = 0 [1]. The functions
5 M), £IV) (gl) have singularities of order xj* ~ (T—Ty) !

xj" (1), f 51)

("71—7710)

where

&
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(&4 §10) 2 for T —~ Ty, x —1. With account for the above, we obtain the asymptotic
behavior of the solution of (10) near T = Ty, x = 1 in the form

(M) =14+a(r—

F(&) = fo+ 1o (v — 1) — L.8afy (1 — 1) + 0.5f™ (v — 7)°

— afo” (v — 1% + 0.5 (0.33f,™

..L05 [}\.C—{—1 5ab(1 —f—2)\.)] (1—11)2,_}—0 2[(2—3},)@0 J_'l 8a2b] (T'-—Tl)/’-}— L
fa (M) = Ao (t — 7y) + (1.336A% +

)R

+afe") (= T+

f1 (1) = fro + Mo’ (v — 1) + (4,334% — fr'a) (v — 71)3/’

+afy) (T — )"

+0.75 (1 — 2A) ab (v — 7,)* + 0.9a% (v — 1) +

0 =066 {[2f,m + 2(24=2D 4 )] LI
TG

ab

b=7r>

c =

* Hereafter functions with subseript 0 correspond to the value of this function at the point 7 =7y, x = 1,
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A unified program was written for the Strela-4 computer of the Moscow University Computing Center
which permits calculating the problem solution for all the stages using the scheme described above. This
program was used to calculate several versions for different media and for different Py and Py,.

Figure 2 shows calculation results which are typical for all the cases. The lines 1 and 3 show the
nature of the fracture front movement in granite Py = 500 at, Py, = 100 at and P; = 1500 at, Py, = 100 at re-
spectively, the lines 2 and 4 are for shales (o = 0.26, E = 1.9 - 10° kg/cm?, ¢, = 38 kg/cm? [2]) with Py =
500 at, Py, = 100 at and for limestone (¢ = 0.25, E = 7 - 10° kg/cm?, 0% = 25.5 kg/cm? [2]) for P = 1000 at,
Py, = 100 at, respectively. The data of Fig. 2 show that all the qualitatively different characteristics in the
fracture front movement zone noted above are actually observed, depending on the problem conditions. In
the case corresponding to curves 1, 2 (relatively low pressures in the cavity), the crack front begins to dis-
place back in the direction of the cavity after o, decreases to zero and oscillations take place in this proc~
ess. In the case corresponding to curve 3 (relatively high pressure in the cavity) this reverse movement
of the crack front and its oscillations are not observed. Finally, in the case corresponding to curve 4
(relatively low tearing strength oy, =25.5 kg /cm?), new fracturing develops after the first stopping of the
fracture front and its subsequent reverse movement with oscillations. This last effect is associated with
the fact that, as shown by the calculation, the value of oy on the front side of the fracture front after the
moment it stops does not change monotonically, but performs oscillations, therefore for a small value of
ox these oscillations of ¢y lead to repeated reaching of the values o4 and to the development of repeat
fractures. The calculations for the other versions showed that repeated fracture can occur a large num-
ber of times.

Figure 1b shows the maximal values of the fracture zone radius in granite as a function of Py and Py
analogous to Fig. 1a (the isolines are for x4 = x; (Py, Pp)).

Figure 3 shows the nature of the fracture front propagation in time for different values of o, in
kg/cm? in a medium with the mechanical characteristics o = 0.3, E = 2.22 - 10° kg /em? for an explosion
with parameters P, =200 at, Py = 0. We see that with decrease of o, the fracture zone enlarges and for
0% = 0 the fracture front velocity becomes constant and equal to C;. The exact solutions of the given prob-
lem can be constructed for this case [3].

Table 1 shows the values of the stresses O Og in kg /cm? and the mass velocities V as a function of
¢ = 7—x and x from the results of the calculation for Py = 200 at, P, = 0 in granite. In Figs. 4 and 5 the
solid curves show the stresses, mass velocities, and displacements at the distance x = 100 from the center
of the explosion in the fracture case; the dashed curves are without fracture for an explosion in granite
with the parameters Py = 200 at, Py, = 0. In these figures the section 1-1 corresponds to the moment the
elastic disturbance,radiated at the moment of fracture at the boundary of the cavity, reaches the section
x =100. We see that account for fracture alters qualitatively the form of the elastic wave radiated from
the center of the explosion, although there is no significant change of the amplitude and duration of this
wave. However, for a more intense explosion (higher pressures Py), when in the initial stage the medium
around the cavity is involved in the plastic flow and a strong compression shock wave propagates in this
region, the elastic wave at large distances from the explosion source is changed both qualitatively and
quantitatively — account for these effects leads to more intense decay of the wave amplitude with distance
and a significant (by an order of magnitude) increase of its duration [4].
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